

SSCC 2025

Annual Assembly

26th August 2025, 9 am - 6 pm

IT'S MORE
THAN A TEST.
IT'S CLINICAL
CONFIDENCE

MORE ACCURATELY IDENTIFY A PATIENTS' RISK OF A FUTURE

CARDIAC EVENT

Abbott's High Sensitive Troponin-I can help to more accurately identify elevated risk of a future cardiac event, even in apparently healthy individuals.

INTENDED USE

For in vitro diagnostic use only.

The ARCHITECT and Alinity's STAT High Sensitive Troponin-I assay is a chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of cardiac troponin-I (cTin1) in human plasma and serum on the Alinity i and ARCHITECT iSystem analyzers.

The ARCHITECT and Alinity i STAT High Sensitive Troponin-1 assay is to be used as an aid in the diagnosis of myocardial infarction (MI) and to aid in the assessment of 30-day and 90-day prognosis relative to all-cause mortality and major adverse cardiac events (MACE) consisting of myocardial infarction, revascularization and cardiac death in patients who present with symptoms suggestive of acute coronary syndrome (ACS).

The cTnI values may also be used, in conjunction with clinical and diagnostic findings, to aid in stratifying the risk of cardiovascular disease, including cardiovascular death, MI, coronary revascularization, heart failure or ischemic stroke in asymptomatic individuals.

© 2023 Abbott. All rights reserved.

All trademarks referenced are trademarks of either the Abbott group of companies or their respective owners. Any photos displayed are for illustrative purposes only. Any person depicted in such photos may be a model. ADD-134409-EMEA-EN 08/23

CORELABORATORY, ABBOTT

Program

SSCC 2025 Annual Assembly Tuesday, August 26th

From 8:30	Registration with coffee and croissants	
9:00	Welcome words (Pierre-Alain Binz, Déborah Mathis)	
9:05–10:55	IVDR regulation: opportunities and challenges Chair: Daniel Müller, Christoph Seger	
9:05	Requirements and challenges for in-house IVDs under IvDO/IVDR	Dr. Damian Hertig
9:40	The story behind IVDR/IvDO & impact on the industry and the Swiss healthcare system	Bernhard Bichsel
10:15	Implementation of the EU Regulation on In Vitro Diagnostic Medical Devices (IVDR): First experiences in Germany	Prof. Dr. Michael Vogeser
11:55–11:10	Coffee break	
11:10–12:20	Selected talks from abstracts Chair: Barbara Rindlisbacher, Laura Millius	
11:10	Pre-analytical considerations in the simultaneous quantification of ketone bodies, pyruvate, lactate, and TCA cycle intermediates	Kaitlyn Berchier
11:27	Design and assessment of a microsampling-based interlaboratory comparison for phosphatidylethanol analysis	PD Dr. Marc Luginbühl
11:45	Identifying whether the source is the tube or the stopper: Evaluation of zinc and antimony contamination in BD blood	Delia Faccioli
	collection tubes	
12:02		Dr. Henning Nilius

Ihr kompetenter
Partner im Labor –

modern seit über 35 Jahren

axonlab.com connecting ideas

Program

SSCC 2025 Annual Assembly Tuesday, August 26th

13:30–14:15	Annual assembly of the SSCC	Dr. Pierre-Alain Binz
14:15–16:00	Patient self-sampling and testing Chair: Viola Günther, Joanna Gawinecka	
14:15	Advancing diabetes care: self- testing, sensor technology, and laboratory integration	Prof. Dr. Lilian Witthauer
14:50	Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device.	Prof. Dr. D.J.A.R. Moes
15:25	Cutting-edge innovations in self-testing	Dr. Markus Schmid
16:00–16:15	Coffee break	
16:15–17:30	Healthy aging and self-optimization: what to test? Chair: Philipp Walter, Déborah Mathis	
16:20	DNA methylation as biomarker for aging	Prof. Dr. Ursula Amstutz
16:55	Clinical reasoning in micronutrients testing	PD Dr. Stefan Markun
17:30	Closing words with poster price (Carlo Largiadèr)	
From 17:35	Apéro	

Engagagiert für eine nachhaltige Zukunft

Die Säulen der Nachhaltigkeit bei Beckman Coulter

Wir konzentrieren uns auf nachhaltige Praktiken, die unseren Gemeinschaften, Kunden, Mitarbeitern und der Umwelt zugutekommen. So leisten wir einen wesentlichen Beitrag zur menschlichen Gesundheit und zum Schutz unseres Planeten. Als Danaher-Unternehmen fördern wir nachhaltige Lösungen für eine gesündere, widerstandsfähigere Zukunft.

Gemeinsam können wir die Gesundheitsdiagnostik transformieren und einen neuen Standard für Nachhaltigkeit in der Branche setzen.

2025_MULTI_AD_SUST_NCEPD_DE

Annual Assembly SSCC 2025

Presenting Author: Kaitlyn Berchier

Kaitlyn Berchier^{1,2}, Chiara Nyffeler¹, Stephen Bruce³, Clothilde Roux³, Jean-Marc Nuoffer^{1,4}, Matthias Gautschi^{1,4}, Alexander Lämmle^{1,4}, Déborah Mathis^{1*}

Pre-analytical considerations in the simultaneous quantification of ketone bodies, pyruvate, lactate, and TCA cycle intermediates

Introduction

Accurate quantification of small metabolites such as ketone bodies (KB: β -hydroxybutyrate [BHB], acetoacetate [AcAc]), pyruvate (Pyr), lactate (Lac), and tricarboxylic acid (TCA) cycle intermediates is essential for clinical diagnostics and metabolic research. These metabolites serve as energy substrates and signaling molecules, with interpretation often relying on physiologically meaningful ratios (e.g., Lac/Pyr, AcAc/BHB). However, their chemical lability and susceptibility to rapid post-collection metabolic changes pose significant analytical challenges.

Methods

We developed an LC-MS method for simultaneous quantification of KB, Pyr, Lac, and TCA intermediates, and systematically evaluated pre-analytical factors affecting their stability and accuracy. We compared Li-heparin (LH), EDTA, sodium fluoride/EDTA (NaF), and sodium citrate (NaCit) collection tubes, as well as deproteinized whole blood (depWB) treated with perchloric acid.

Results

Stability was assessed in plasma at room temperature (RT) over 24 hours, and in LH and depWB at RT, 4 °C, and –20 °C over 7 days. Pyr, Lac, AcAc, and fumarate were most labile, while BHB and citrate remained stable. LH-plasma showed minimal metabolic changes and yielded consistent results. NaF effectively stabilized Lac but compromised Pyr and TCA intermediates. DepWB improved Lac/Pyr ratio reliability but introduced greater variability and matrix effects. NaCit induced unexpected metabolic shifts, suggesting in vitro TCA activity.

Conclusion

Pre-analytical variables critically impact metabolite integrity. LH-plasma offers the best compromise for routine quantification when processed rapidly. DepWB remains the method of choice for precise Lac/Pyr ratio determination, despite its increased variability.

- ¹ University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ² Dr. Risch Medical Laboratory, Liebefeld, Switzerland
- ³ Clinical Chemistry Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- ⁴ Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Switzerland

Optimize your Workflow with BÜHLMANN Turbidimetric Assays and Quantum Blue® POC Tests

Turbidimetric Assays

- NEW sCAL® turbo (Serum Calprotectin)
- **fCAL**° **turbo** (fecal Calprotectin)
- **fPELA**° **turbo** (fecal Pancreatic Elastase)
- Adaptable on all major clinical chemistry analyzers
- Random access, fast Turn-Around-Time of ~10 min
- High correlation to established ELISA methods

Quantum Blue® POC Tests

- Infliximab and Adalimumab
- Anti-Infliximab and Anti-Adalimumab
- fecal Calprotectin
- **COMING SOON fecal Pancreatic Elastase**
- Innovative Solution based on latest Lateral Flow Technology
- Quantitative Results in ~15 min
- RFID Technology and LIS connectivity

BÜHLMANN Laboratories AG, Switzerland info@buhlmannlabs.ch | www.buhlmannlabs.ch

Annual Assembly SSCC 2025

D. Faccioli¹, V. Gantenbein¹, C. Seger¹, N. Gibitz-Eisath¹

Identifying whether the source is the tube or the stopper: Evaluation of zinc and antimony contamination in BD blood collection tubes

Introduction

In a previous study [1], various blood collection tubes were evaluated regarding suitability for trace element quantitation. Elevated zinc (66Zn) and antimony (121Sb) levels were detected in blood collection manufactured by Becton Dickinson (BD). These outcomes were hypothesized to be related to the tube components: most BD stoppers consist of butyl rubber, whose manufacturing process involves the use of zinc salts, while the tubes themselves are made of polyethylene terephthalate (PET), where antimony is used as a catalyst during fabrication. This study aimed to clarify this hypothesis by determining whether the source of contamination originated from the tube or the stopper.

Methods

Three representative tube types were included: a serum tube with gel (BD-RST, 368774), a heparin tube with mechanical barrier (BD-BC, 365049) and a serum trace element tube (BD-TE, 368380). Each type was analyzed in triplicate. Tubes were filled with 5 ml of 0.1 % HNO3 and stored upright until analyzed. Stoppers were incubated separately in Sarstedt screw-cap tubes (pre-tested to be contamination free) containing 15 ml of 0.1% HNO3. Zn and Sb were quantitated after 2, 6, 24, and 48 h of incubation using inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer, NexION 2000B under Recipe ClinCal Serum Trace Elements Calibration). Contaminations considered as relevant if the measured

concentration exceeded 25% of the lower limit of the reference range (Zn 0.180 mg/L) or the clinical cut-off (Sb 0.05 μ g/L).

Presenting Author: Delia Faccioli

Results

Significant Sb contaminations (exceeding the defined cut-off by over 100-fold) were detected in the BD-RST and BD-TE tubes, whereas their stoppers showed no relevant Sb release. The BD-BC tube showed contamination in both tube and stopper, although concentrations were clearly lower than in the other two merchandises.

Clinically relevant Zn levels, which increased slightly with exposure time, were detected in the stoppers of both conventional tubes (BD-RST and BD-BC). No relevant contamination was observed in either the tube or stopper of the trace element device (BD-TE).

Discussion and Conclusion

The findings support the hypothesis that Sb contamination originates primarily from the PET tube material, as also noted by the manufacturer. The stoppers are identified as the source of the observed Zncontamination in conventional devices. However, the study design involved certain limitations: HNO3 was used as a surrogate matrix instead of serum, and the stoppers were fully immersed rather than exposed to a brief contact typical in clinical blood draws. Although the experimental setup simulates a worst-case scenario, the findings nonetheless indicates that a clinically relevant influence remains a realistic concern.

¹ Labordiagnostic St. Gallen West AG, St. Gallen, Switzerland

www.datamed.ch

+41 26 409 74 74 - datamed@datamed.ch - 1762 Givisiez

Annual Assembly SSCC 2025

Nicholas Kueng^{1,2}, Fanny Sandberg^{1,2}, Daniel Sidler³, Vanessa Banz⁴, Annalisa Berzigotti⁵, Charlotte K.Y. Ng^{6,7}, Carlo R. Largiadèr¹, Ursula Amstzutz^{1*}

Mapping Cell-Free DNA Tissue Origin in Transplant Recipients Through Methylation Signatures

Introduction

Donor-derived cell-free DNA (dd-cfDNA) is a valuable biomarker for solid organ transplant monitoring but has some limitations. Tissue-specific methylation offers an alternative approach to identify cfDNA tissue origins without relying on donor-recipient genotype differences. Here, we present a targeted sequencing assay to determine cfDNA tissue of origin (TOO) and dd-cfDNA proportion, addressing limitations in transplant monitoring and advancing patient care.

Methods

Utilizing a methylation atlas of 40 human cell types, we developed a targeted capture panel for deep methylation sequencing of cfDNA. cfDNA was extracted from plasma of kidney (KT) and liver recipients (LT), as well as healthy controls (HC), and subjected to targeted methylation sequencing to determine the cfDNA TOO in genome equivalents/mL (GE/mL).

Results

Genomic DNA analysis showed 93-98% accuracy for kidney epithelium,

hepatocytes, B- and T-cells with detection sensitivity as low as 0.3%. Mean cfDNA from kidney epithelium was higher in stable LT (n=20, 31 GE/mL) and KT (n=31, 29 GE/mL) recipients compared to HC (n=23: <1 GE/mL). Hepatocyte cfDNA was similarly elevated (LT: 147; KT: 107; HC: 48 GE/mL). KT exhibited increased megakaryocyte cfDNA compared to LT or HC. Within 24 hours post-transplantation, only a minority (median: 5%, interquartile range, IQR: 0-12%) of ddcfDNA in KT (n=18) originated from the kidney epithelium, while a median of 82% (IQR: 60-96%) originated from hepatocytes in LT (n=15). The remaining dd-cfDNA was predominantly of hematological and endothelial in origin.

Presenting Author: Nicholas Küng

Conclusion

We developed a targeted deep methylation sequencing workflow that allows accurate TOO deconvolution of cfDNA from a single standard blood collection tube. This enables precise monitoring of organspecific injury in transplantation, potentially improving the management of transplant recipients, as indicated by distinct tissue injury profiles.

- ¹ University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ² Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- ³ Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- ⁵ Department of Hepatology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- ⁶ Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland ⁷ IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy

Autoimmune diseases

Allergy

Endocrinology

What does **EUROIMMUN** offer?

We provide a broad portfolio of assays in the fields of Autoimmune diseases, Infections, Alzheimer's diseases, Allergy, Endocrinology and Bone metabolism.

Alzheimer's

disease

Automation solutions

Annual Assembly SSCC 2025

Matthias Bantle¹, Frederike Stöth^{1,2}, Wolfgang Weinmann¹, Marc Luginbühl^{2,3}

Design and assessment of a microsampling-based interlaboratory comparison for phosphatidylethanol analysis

Introduction

Phosphatidylethanol (PEth) has become a widely recognized and reliable biomarker for assessing alcohol consumption and monitoring abstinence. Its increasing use in clinical and forensic contexts underscores its significance in evaluating drinking behavior. However, despite its growing adoption, there remains a comprehensive knowledge regarding the robustness. standardization. comparability of methodologies and results across laboratories. Recognizing this gap, the first international consensus on the use and interpretation of PEth was published in 2022, providing a foundational framework for harmonizing its application.

Methods

To further this effort, an interlaboratory comparison study involving three rounds of testing with microsamples was conducted. The study aimed to establish an experience-based foundation standardization and method harmonization. Participating laboratories provided their sampling devices, which subsequently sent to the Forensic Toxicology Laboratory at the University of Bern. For each round, four authentic blood samples with predetermined PEth concentrations were applied to the devices and returned to the laboratories for analysis.

The target concentrations of PEth 16:0/18:1, the most commonly measured homologue, ranged from 16 to 474 ng/mL (0.023-0.676 umol/L). These values included concentrations close to critical decision thresholds of 20 ng/mL (0.025 µmol/L) and 200 ng/mL (0.28 µmol/L), which are relevant for differentiating social drinking, excessive consumption, and abstinence.

Presenting Author: Marc Luginbühl

Results

The results were evaluated according to guidelines established by Horwitz and the Society of Toxicological and Forensic (GTFCh). Chemistry Among participating laboratories, 73% successfully quantified and reported all four samples within acceptable limits for each round. Furthermore, over 90% of laboratories quantified and reported at least one sample within acceptable limits, demonstrating a high level of analytical capability overall.

Conclusion

This study highlights the feasibility of interlaboratory comparisons microsamples and underscores the need for continued efforts to harmonize methods and enhance reliability. These findings contribute to the development of standardized protocols and foster greater confidence in the use of PEth as a biomarker for alcohol consumption.

- ¹ Institute of Forensic Medicine, University of Bern, Switzerland
- 2 The Society of PEth Research (PEth-NET), Switzerland.
- 3 University Hospital of Zurich, University of Zurich, Switzerland

THE MOST COMPLETE QC SOLUTION FOR MOLECULAR TESTING

Whole Pathogen

Capable of monitoring the entire testing process including extraction, amplification, and detection.

As controls are whole pathogen, they contain the full organism genome.

Third Party Controls

All Qnostics controls can be described as true third-party controls thus delivering an independent, unbiased assessments of assay performance whilst helping to meet ISO 15189 regulatory requirements.

Traceability

Organisms traceable to WHO standards where possible.

Multi-Analyte Material

Where appropriate, Qnostics provide multi-analyte controls designed for use with multiplex assays.

PORTFOLIO

Transplant

Respiratory

Blood Borne

Exotic

Gastrointestinal

randox.com marketina@randox.com

Central Nervous

System

Annual Assembly SSCC 2025

Presenting Author: Selina Mazenauer

S. Mazenauer¹, P. Never¹, L. Bernasconi¹

Calculating albumin-adjusted calcium: the advantage of using a locally derived formula

Background

Deviations in circulating calcium levels occur in various pathological conditions, including skeletal, (para)thyroid, and kidney diseases. Approximately half of total serum calcium is bound to albumin, while the remaining half circulates in its ionized form, which is biologically active. Variations in albumin levels thus influence the concentrations of total serum calcium, while ionized calcium levels remain constant. However, total serum calcium is routinely measured instead of ionized calcium, primarily for practical reasons. To account for deviations in albumin levels, albuminadjusted total calcium levels are commonly reported as an alternative to direct ionized calcium measurement.

Aim

Various formulas exist for adjusting total calcium levels. We highlight the advantages of a locally derived, internally albumin-adjusted validated equation compared to relying solely on total serum calcium measurements or rigid historical correction formulas that do not consider nor the local sample collective nor analytical techniques.

Methods

Albumin-adjusted total calcium levels were calculated with a locally derived formula developed as described by James et al. based on data of 3694 patients. The correlation between unadjusted and albumin-adjusted total calcium levels with ionized calcium levels was then assessed.

Results

The locally derived formula for albuminadjusted calcium provided a more accurate assessment of calcium status compared to measuring total calcium alone or using previously established, fixed correction formulas.

Conclusion

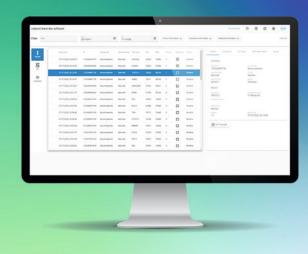
Our results demonstrate the feasibility of developing and using a locally derived formula for albumin-adjusted calcium correction. The locally adjusted formula provides a surrogate marker for ionised calcium and outperforms both the sole assessment of unadjusted total calcium and the simplified Payne formula for adjusted total calcium.

¹ Institut für Labormedizin, Kantonsspital Aarau

cobas°

cobas[®] trace doc Mehr Zeit fürs Wesentliche dank intelligenter Datenarchivierung

Vollautomatische Langzeitarchivierung der Test-, QKund Kalibrationsergebnisse


Schnellsuche anhand verschiedener Kriterier

Einfache Integration in Ihre lokale Infrastruktur

Gesicherte Datenablage

diagnostics.roche.com

Annual Assembly SSCC 2025

Henning Nilius *1, Michael Stickel* , Karin Volken , Alex Tolkmitt , Michael Nagler , for the EPIC-Beaker implementation group

A next-generation integrated Laboratory Information System: Experience from the first Epic-Beaker implementation in Switzerland

Background

Traditional laboratory information systems (LIS) operate as stand-alone solutions, with an essentially one-way flow of information from the laboratory to the electronic health record (EHR) system. Consequently, laboratories have been treated as external service providers, which has limited the opportunities for innovation in healthcare processes.

Methods

At Inselspital, Insel Gruppe AG, we implemented the EHR system Epic (Epic Systems, Verona, Wisconsin, USA) in March 2024. In response, the center of laboratory medicine decided to switch to its integrated LIS module 'Beaker'. Beaker is an inherent part of the EHR, which means that the EHR and the LIS use a unified database. Here, we report on key insights from the first Beaker implementation in a German-speaking university hospital.

Results

Within two years of preparation, we formed an interdisciplinary team with a shared vision, uniting IT, EPIC experts, laboratory professionals, and clinical stakeholders. Key success factors included giving the teams the authority to decide (empowerment), recruiting analysts with laboratory expertise, and conducting extensive system testing. Four examples illustrate the apparent advantages:

First, Epic enables closed-loop sample tracking from blood draw to storage, recording time, user, and location. While this required adjustments in nursing routines, it has reduced identification errors, achieved full traceability, and essentially eliminated manual search.

Presenting Author: Henning Nilius

Second, up-to-date and full clinical information is directly accessible within the lab user interface, supporting safe validation and active communication with clinical teams

Third, the unified database links lab results with clinical data such as diagnoses, allowing real-time monitoring of key performance metrics such as device performance, turnaround times, and test utilization, while also supporting targeted research projects.

Fourth, the technical flexibility of the system also enabled the successful implementation of an in-house diagnostic decision-support machine learning model. Challenges included adapting to differences in laboratory traditions between Switzerland and the US. For example, custom PDF reporting capabilities are very limited.

Conclusion

An integrated LIS, like EPIC-Beaker, has the potential to transform the laboratory's role from a passive result provider to an active partner in clinical care and research, thus supporting patient safety, operational efficiency, and diagnostic innovation.

¹ Inselspital, Bern, University Hospital

Your trusted Partner for Diagnostics & Life Science.

For over **35 years**, RUWAG has delivered high-quality products, expert service, and cutting-edge solutions, all powered by a passionate and professional team.

Diagnostics

Explore our broad range of in vitro diagnostics:

- Immunology & Allergology
- Serology & EQC
- Microbiology
- Molecular Diagnostics

All sourced from trusted suppliers and fully IVDR-ready.

Life Science

RUWAG empowers cutting-edge research, from basic science to clinical application.

NEW in our portfolio: test systems for cell manipulation and molecular & digital pathology.

Instruments & Automation

We offer automation solutions ranging from analysers for autoimmune diagnostics, infectious serology, and allergy to full lab automation for the microbiology lab.

Our local experts - experienced application specialists and service engineers - support you every step of the way.

Annual Assembly SSCC 2025

Henning Nilius¹, Jan-Dirk Studt², Dimitrios A. Tsakiris³, Bernhard Gerber⁴, Johanna A. Kremer Hovinga¹, Tamam Bakchouli⁵, Michael Stickel¹, Joerg C. Schefold*¹, Michael Nagler*¹, *Shared Senior Authorship

An accurate and pragmatic diagnostic algorithm for heparin-induced thrombocytopenia (HIT) in critically ill patients: an analysis of the TORADI-HIT study

Introduction

Diagnostic tools and scoring systems that have not been specifically validated in the context of critical illness are mostly not useful for ICU staff. This also applies to tests for heparin-induced thrombocytopenia (HIT). We thus aimed to validate an accurate and pragmatic machine-learning (ML) algorithm integrating both clinical data and laboratory tests to predict the presence of HIT.

Methods

For this analysis, we included mixed surgical-medical ICU patients from the prospective multicenter TORADI-HIT cohort. TORADI-HIT enrolled patients with suspected HIT (defined by either antiheparin/PF4 immunoassay ordered or application of the 4Ts Score) across 10 study centers in Switzerland, Germany, and the United States. Clinical and laboratory data were collected, and multiple antiheparin/PF4 immunoassays performed. HIT was defined by a positive heparin-induced platelet activation (HIPA) assay, which is considered the reference gold standard. We investigated the diagnostic performance of the TORADI-HIT algorithm and current diagnostic tests (including the American Society of

Hematology (ASH) algorithm) alongside clinical outcomes.

Presenting Author: Henning Nilius

Results

Of 519 ICU patients, 473 (91.1%) had complete data and were analyzed. HIT was confirmed in 7.8% of cases (n = 37): the median age was 66 years (62.6% male). Sepsis was present in 327 patients (69.1%), 73 (15.4%) had an intra-arterial device, and 96 (20.3%) had undergone major surgery. The area under the receiver operating characteristics curve of the TORADI-HIT algorithm for the presence of HIT was 0.97 (95% CI: 0.94, 1.00) (false negative rate 8.1%, (FNR) with a falsepositive rate of 6.9% (FPR) n=30). In contrast, the ASH algorithm had a falsenegative rate (FNR) of 13.5% (n = 5) and a false-positive rate (FPR) of 9.2% (n = 40). Patients with HIT developed venous thrombosis significantly more often than those without HIT (36.1% vs. 9.4%, p < 0.001).

Conclusion

Our data indicate that the TORADI-HIT algorithm is an accurate and pragmatic algorithm in the ICU population. It may contribute to reducing delayed HIT diagnosis and overtreatment in the critically ill

Affiliations

- ¹ Inselspital, Bern University Hospital Bern, Switzerland
- ² University Hospital of Zurich, University of Zurich, Switzerland
- 4 Oncology Institute of Southern Switzerland, Bellinzona
- ⁵ University Hospital of Tübingen, Germany

RUWAG Handels AG email service@ruv
Bielstrasse 52 phone +41 32 644 2
CH-2544 Bettlach web www.ruwag

Autoimmundiagnostik

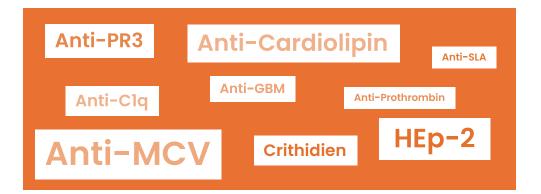
für alle Laborgrößen

Die Bestimmung von Autoantikörpern ist fester Bestandteil des diagnostischen Portfolios von Laboren jeder Größenordnung. Sebia bietet hierfür eines der umfangreichsten Testportfolios mit breiter Methodenwahl und unterschiedlichem Automatisierungsgrad an.

Flexible und zeitnahe Diagnostik mit Alegria 2

- >100 Testparameter f
 ür die Autoimmunund Infektionsdiagnostik
- Random Access Vollautomation mit kontinuierlichem Beladen
- Gebrauchsfertige Teststreifen inklusive testspezifischen Reagenzien
- Barcodierte chargenspezifische Kalibrierkurve (SMC-Technologie)
- Flexible Kombination unterschiedlicher Testprofile in einem Testlauf

Vorteile der Sebia Automation für die Autoimmundiagnostik


- Flexibilität in der Testauswahl (Breites Testportfolio)
- Hoher Grad an Automation (lange Walk-Away–Zeiten)
- Entlastung der Labormitarbeiter
- Vollständige Rückführbarkeit

Vollautomatisierte Immunfluoreszenz mit P30 und dIFine

- Breites Produktportfolio für die Autoimmundiagnostik
- Vollautomatisierte Testabarbeitung inklusive Eindecken
- automatisierte Fluoreszenzmikroskopie
- KI-gestützte Mustererkennung mit Befundvorschlag
- Integrierter HEp-2 Atlas
- Stapel-Freigabe negativer Befunde

Weitere Informationen finden Sie hier

Annual Assembly SSCC 2025

F. Sandber^{1, 2}, N. Küng^{1, 2}, V. Banz³, A. Berzigotti³, C.R. Largiadèr², D. Sidler⁴, U. Amstutz²

Inter- and intra-individual variability of donor-derived cell-free DNA in stable kidney and liver transplant recipients

Background

Donor-derived cell-free DNA (dd-cfDNA) is emerging as a non-invasive biomarker in kidney (KTx) and liver (OLT) transplant recipients for monitoring allograft health. Many studies have shown correlations between elevated dd-cfDNA fractions and graft rejections, potentially enabling earlier detection and treatment of graft dysfunctions. Our aim was to identify the inter- and intra-individual variability of dd-cfDNA in stable KTx and OLT within the first year after transplantation to determine baseline values and compare variability between absolute and relative dd-cfDNA quantification.

Methods

Blood and urine samples from KTx and OLT were collected longitudinally at regular visits. Mismatched HLA alleles between donor and recipient were used to determine absolute (cp/mL) and relative (%dd-cfDNA) quantities of dd-cfDNA using droplet digital PCR at three time points per recipient. Urinary dd-cfDNA was corrected for urine concentration using urinary creatinine (UCreat).

Results

The timepoints were not significantly different for any of the dd-cfDNA quantities of stable recipients (Tbl.A). Absolute and fractional dd-cfDNA quantities correlated significantly in plasma samples from KTx

(r=0.47, p<0.001) and OLT (r=0.76, p<0.001) but not in urine samples of KTx (r=0.18, p=0.229). No significant correlation was found between plasma and urine samples of KTx (absolute: r=0.21, p=0.178; relative: r=0.22, p=0.144). Intra-individual variability was higher in plasma samples from KTx compared to urinary values or OLT (Fig.A). Adjusting absolute urinary dd-cfDNA quantities with the UCreat reduced the inter-individual variability (Fig.A).

Presenting Author: Fanny Sandberg

Conclusion

We observed no significant dynamic of dd-cfDNA in the first year after transplantation of stable KTx or OLT. The contributions of inter- and intra-individual variability to dd-cfDNA quantities varied between OLT and KTx, and between urine and plasma, requiring further investigation including comparison to dd-cfDNA of non-stable KTx and OLT.

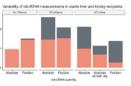



Figure A: The Inter- and Intra Industrial variabities calculated from the linear mixed effects medals for absolute and fractional did-ciDNA in plasma (KTs nutf), CET nutf) and union (KTs nutf) samples with values considered

Affiliations

- ¹ Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
- ² Department of Clinical Chemistry, Inselspital Bern, University Hospital Bern, Switzerland
- ³ Department of Visceral Surgery and Medicine, Inselspital Bern, University Hospital, Switzerland

Sebia Swiss | Verenastrasse 4b | 8832 Wollerau | Schweiz Tel.; +41 44 787 88 10 | contact.ch@sebia.com | www.sebia.com/de-ch

⁴ Department of Nephrology and Hypertension, Inselspital Bern, University Hospital Bern, Switzerland

Bei Siemens Healthineers leisten wir Pionierarbeit im Gesundheitswesen. Für ieden Menschen, Überall, Nachhaltig, Als eines der führenden Medizintechnikunternehmen auf unseren Planeten. Indem wir kontinusetzen wir uns ein für eine Welt, in der

siemens-healthineers.ch

bahnbrechende Entwicklungen im Gesundheitswesen neue Möglichkeiten schaffen - mit den geringstmöglichen Auswirkungen ierlich Neuerungen auf den Markt bringen,

unterstützen wir medizinisches Fachpersonal mit Innovationen für eine personalisierte Versorgung, Konzepten zur Steigerung von Qualität und Produktivität und bei der Neugestaltung der Gesundheitsversorgung.

Annual Assembly SSCC 2025

Presenting Author: Marina I. Schläpfer

Marina I. Schläpfer^{1, 3}, Daniel Wegmann², Carlo R. Largiadèr¹

Quantifying Genetic Effects on DPD Activity Using **Bayesian Modeling of UH₂: U Ratios**

Introduction

Fluoropyrimidines (FPs) such as 5fluorouracil and capecitabine cornerstone chemotherapies for solid tumors that are limited by the occurrence of severe toxicity in a subset of patients. The rate-limiting enzyme for FP catabolism is dihydropyrimidine dehydrogenase (DPD), encoded by DPYD, which degrades ~85% of administered drug. While several loss-offunction DPYD variants are clinically actionable, they explain only a small proportion of interindividual variability in toxicity risk.

Methods

To quantify the effects of DPYD variants and clinical covariates on DPD activity, a Bayesian hierarchical model implemented using the R-package NIMBLE. The model estimated the posterior effects of established and candidate DPYD variants, age group, and sex on log-transformed plasma UH2:U ratios in a Caucasian cohort. These ratios serve as validated surrogate markers of DPD enzymatic activity. Genotypes were modeled additively; age was modeled categorically. Markov Chain Monte Carlo sampling (30,000 iterations, 4 chains) achieved convergence (\hat{R} < 1.1), and posterior summaries were used to derive fold-changes and 95% credible intervals for each predictor. The model accounted for

uncertainty in UH2:U measurements through an estimated precision parameter

(T), mitigating the influence of intraindividual noise that could be from DPD circadian rhythm and having only one measurement per patient.

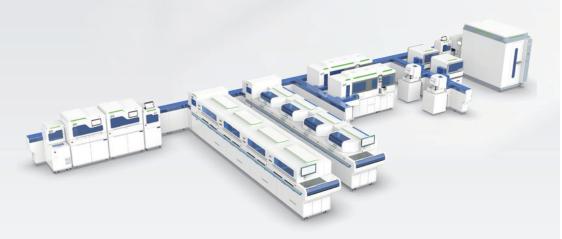
Results

As expected, known loss-of-function variants (DPYD c.1905+1G>A, c.1679T>G. c.2846A>T, and HapB3) were strongly associated with reduced DPD activity. Additional variants also showed potential effects; for example, c.85T>C has been associated with increased activity, while c.496A>G has been linked to decreased activity in prior studies. An age above 60 was associated with lower DPD activity. while sex had a minimal effect also consistent with current literature.

Conclusion

This Bayesian framework enables robust, probabilistic inference of genetic and demographic effects on DPD activity. It will serve as a foundation for integrating genome-wide association study findings to improve multivariable risk prediction and identify novel contributors to FP toxicity. Ultimately, this approach informs whether variant effects on DPD activity can be modeled at the population level and contributes to the advancement of genotype-guided dosing in oncology.

- ¹ Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
- ² Department of Biology, Faculty of Science and Medicine, University of Fribourg, Switzerland
- ³ Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland



Beyond Automation Towards Excellence

SATLARSTM T8

Total Laboratory Automation Solutions

Annual Assembly SSCC 2025

Presenting Author: Christoph Seger

C. Seger¹, S. Niggli¹, S. Schwitzer¹, N. Gibitz-Eisatz¹

Head-to-head comparison of two cystatin c assays

Introduction

Cystatin C (CysC) serves as serum-based marker for assessing the measured glomerular filtration rate (mGFR). It has advantages over creatinine-based mGFR, since it is independent from the muscle mass of the individual patient. With the introduction of a novel CysC assay format for the Abbott Alinity c platform (CysC_A) at our laboratory, a method comparison study was undertaken with the Roche Cobas c platform implementation (CysC_R).

Methods

Seventy samples from routine measurements (timeframe one month) performed with CysC_R (TinaQuant, ID 06600239 190), were evaluated in parallel with CysC_A (Sentinel, ID 06T32-30). According to the package inserts, both assays are traceable to ERM-DA471/IFCC. CysC based eGFR was calculated using gender- and age-adjusted CKD-EPI formulas [1], and statistical evaluation was performed after anonymization with MedCalc 20.019. KDIGO classification G1–G5 followed the AGLA [2].

Results

Pasing and Bablok regression analysis (CysC_A = 1.04*CysC_R - 0.12 mg/l) showed highly correlated data (Spearman's rho = 0.98 [95% CI 0.97-0.99]). Bland-Altman analysis revealed a +8.9% [95% CI 7.8-9.9%] method bias of CysC_A relative to CysC_R. CysC_A

derived average eGFR was 8.8% [95% CI 7.8-9.8%] higher than CysC_R eGFR with a 2S-scatter range of ±8.5%. The CysC based CKD KDIGO classification showed class agreement with a Cohen's kappa of 0.86 [95% CI 0.77–0.95]. Classification differences were limited to G1 and G2, accounting for 78% of all cases. CysC_A led to 40 G1 and 15 G2 classifications, while CysC_R led to 29 G1 and 26 G2 classifications. Eleven cases classified as G2 with CysC_R changed to G1 with CysC A.

Conclusion

The comparison of two IVD-CE-CvsC assays performed under identical metrological traceability conditions revealed limited quantitative differences that are most likely not clinically significant. Since this investigation was limited in terms of space and time, it cannot be concluded that the average deviation of the interassay results found in this study represents a statistically sound systematic error contribution.

[1] Leseley A, Inker M.D., Christopher H, et al, Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C. N Engl J Med 2012;367:20-29. [2] https://agla.ch/de/rechner-und-tools/niereninsuffizienz.

¹ Labordiagnostic St. Gallen West AG, St. Gallen, Switzerland

Hemostasis is in our blood.

Innovative Analytik

Un cœur analytique révolutionnaire

Die perfekte Optimierung ihres Laboralltags

> Pensé pour faciliter votre quotidien

Maximale Autonomie für mehr Laufzeit

Une autonomie maximale pour plus de productivité

Diagnostica Stago S.A.S Lire attentivement les instructions figurant dans le (les) manuel(s) d'utilisation

sthemO ist eine Marke der Stago-Gruppe. Die Rechte an den Marken und Logos die in diesem Dokument verwendet werden, gehören der Stago-Gruppe. Die Verwendung dieser Marken ist ohne die Genehmigung der Stago Group nicht erlaubt. Der sthemO 301 ist eine automatisierter quantitativer Gerinnungsanalyser zur In-vitro-Diagnostik für das Personal in medizinischen Labors. Die Leistungsdaten der Geräte/Reagenzien-Kombination sind in den Gebrauchsanweisungen der Reagenzien zu finden.

Stago CH S.A. Sägereistrasse 20 CH-8152 Glattbrugg - Switzerland +41 (0)43 497 27 55 info@ch.stago.com www.stago.ch

Annual Assembly SSCC 2025 Presenting Author: Jörg Oliver Thumfart

A. Hemmerle¹, J.O. Thumfart¹

Examples for the use of QIP-MS (EXENT) in gammopathy disease management

Introduction

In gammopathy disease management (e.g., MGUS or multiple myeloma (MM)), the initial diagnosis often begins with a suspicious serum electrophoresis displaying an M-gradient, followed by immunofixation electrophoresis (IFE). quantification of the free light chains, and bone marrow puncture, which is then followed by sequencing or flow cytometry [1]. In the course of the therapy, this Mgradient should fade away, and the IFE should become inconspicuous. If complete remission is reached, one might look for MRD (minimal residual disease). In some cases, IFE remains positive for IgG-kappa despite a clinically successful therapy [2]. In such cases, the question arises whether this is a truly pathogenic clone (tumor product of an MM) or if this IFE signal is directed against a therapeutic monoclonal antibody (tmAB) [3].

Methods

Serum analysis for gammopathy patient follow-up. For patients from an oncology department, serum samples were analyzed by electrophoresis and IFE. For questionable results - MRD negative in the bone marrow and IFE positive – an attempt for clarification with QIP-MS (EXENT®) was tried. In the presented examples, these sera are tested for IgG, IgA, and IgM using Optilite with reagents from The Binding Site, allowing for quantitative analysis.

In addition, light chains kappa and lambda are analyzed with QIP-MS (EXENT®, The Binding Site).

Results

In both presented cases, we could clearly show the presence of a tmAB (Daratumumab). In one case, two clones were visible via QIP-MS. One displays the tmAB, and the other is (proofed by QIP-MS) the originally pathogenic tumor product.

Conclusion

We demonstrate the utility of the new QIP-MS technology for distinguishing tmAB from pathogenic tumor products in the management of myeloma disease. This capability will become increasingly important as the number of therapies using tmAB continues to increase exponentially. For this reason, the number of small gradients or slight bands visible by serum electrophoresis or IFE will also increase, and it is necessary to distinguish these therapy-related signals from true pathologies with unambiguous certainty.

For optimized patient care, we believe it is better not only to resolve unclear cases retrospectively with reserve samples (these will not always be available), but also to introduce EXENT® analysis as part of the characterization of a gammopathy in the long term.

¹ Dr. Risch Ostschweiz AG, Departement Speciality Chemistry Buchs, Switzerland

Das neue Allergenlexikon

Umfassende Fachinformationen über Allergene und ihre Komponenten

Das Allergenlexikon enthält zahlreiche Informationen zu hunderten von Allergengesamtextrakten und Allergenkomponenten, einschließlich Allergencodes, -beschreibungen und -charakteristika sowie zu Kreuzreaktivitäten und klinischen Erfahrungen.

Scannen Sie den QR-Code, um auf unser umfangreiches Lexikon zuzugreifen.

Schweizerische Gesellschaft für Klinische Chemie Société Suisse de Chimie Clinique Società Svizzera Chimica Clinica Swiss Society of Clinical Chemistry

Committees

Scientific Committee

Pierre-Alain Binz Carlo Largiadèr Véronique Viette Philipp Walter Daniel Müller Déborah Mathis Viola Günther Barbara Rindlisbacher

Organization Committee

Carlo Largiadèr Déborah Mathis Pierre-Alain Binz Véronique Viette Philipp Walter Daniel Müller Ines Ljuskovic

Mehr erfahren unter thermofisher.com/phadia

© 2025 Thermo Fisher Scientific Inc. Alle Rechte vorbehalten. Alle Warenzeichen sind das Eigentum von Thermo Fisher Scientific und ihrer Tochtergesellschaften, sofern nicht anders angegeben. Rechtmäßiger Hersteller: Phadia AB, Uppsala, Schweden 428673.AL.EU2.DE.v1.25

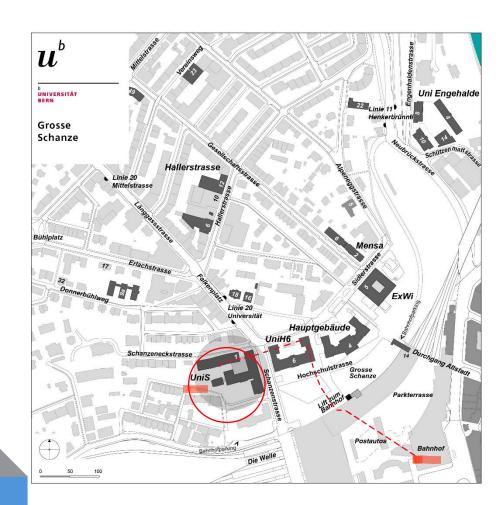
thermo scientific

HLC-723®

Compact with **Big Impact**

Designed to set new standards, the new Tosoh HPLC analyser GR01 combines user-friendly operation with robust reliability, offering advanced performance and a strong return on investment.

- → Enhanced Analytical Performance
 - Throughput Up to 120 samples / hour
 - **Performance** Repeatability CV < 1%
- → Designed with Growth in Mind
 - Scalability 90 sample loader or 290 sample loader
 - Haematology line connection
 - **Total Laboratory Track** Automation
- → Impact on Diabetes Management
 - **Accuracy** without compromising on rapidity of execution
 - **Analytical performance** with haemoglobin variants flagging
 - Clinical values for better patient care



Congress Venue

UniS Schanezneckstrasse 1 3012 Bern

Public transportation / by walking (see below)

With bus no. 20 (direction Längasse) from "Bern, Hauptbahnhof" to bus stop "Bern, Universität"

Thank you

Sponsors

We sincerely appreciate the generous support of our sponsors in making this conference possible. We invite you to visit them during coffee and lunch breaks, as well as the Apéro after the congress.

Gold Sponsors

Silver Sponsors

